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1. INTRODUCTION AND SUMMARY

There is a strong interest in the exact computation of as much as is possible
about the equation of state of matter under extreme conditions. One such approach is
the use of finite-temperature, many-body Matsubara perturbation theory [1]. Gell-
Mann and Brueckner [2] have computed the expansion in powers of e, the charge
on the electron, through the order e3. This achievement was very significant in as
much as the expansion is nominally in powers of e2. They showed that although the
terms corresponding to each diagram in the so called family of “ring diagrams” were
divergent, when one sums all of them up the result is finite, but the leading order
behavior is not the nominal e* behavior which one had expected, but instead the
leading order is e3! Their result is for the high-density case of a zero temperature
electron gas with a neutralizing positively charged background. Since they were
working at zero temperature, they used the standard perturbation theory and not
that of Matsubara. In two previous papers [3-4] we have extended these results to
all densities and temperatures, and have begun the extension of the expansion to
order e*. In reference [4] we stated that there were still some terms missing from our
results in order e*. Specifically these terms are the corrections to the infinite sum of
“ring diagrams” which rearrangement of the zero temperature series Gell-Mann and
Bruckner found to be necessary to make the perturbation series useful. We compute
these missing terms in this paper, but shortness of space precludes the provision of

the full details.

In the second section we review some of the details of the perturbation theory,
and lay the basis necessary for the computation of the missing terms. In the third
section we compute the missing terms for materials which are pure elements. In the
fourth section we solve the fugacity equations which allow us to replace the theoretical
variables, the electron and the ion fugacities, with directly observable quantities such



as the density and the temperature. We also give plots which show the relative
importance of various terms in the perturbation exapansion. Finally in the fifth
section we consider the low density ionization limit, in the high temperature region.
We compare this limit with the Saha equation, and find that the latter needs some
modification.

2. PERTURBATION THEORY

The system that we will treat here is defined by the Hamiltonian,
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where 7, p are the position and momentum for the electrons and R, P are for the
ions of charge Z. To treat our problem we employ finite-temperature perturbation
theory (Matsubara) [1]. We will treat the electrons as Fermions and the ions as
Maxwell-Boltzmann particles.

To begin, we note that pQ is a thermodynamic potential [5], where p is the
pressure and {2 is the volume. It is equal to —kT'log @ where k is Boltzmann’s
constant, 7' is the absolute temperature, and Q is the partition function from the
grand canonical ensemble. In terms of other thermodynamic quantities p2 = T'S +
uN — U, where S is the entropy, p is the Gibbs free energy, or thermodynamic
potential, per particle, N is the number of particles, and U is the internal energy.
The perturbation series for the pressure is related to that for the energy by the
observation that,
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where V is the interaction potential, i.e., everything proportional to €? in (2.1). Thus,

= e 2(V), (2.2)
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P = / e 2(V)de? + poQ, (2.3)
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relates the series for the energy and that for the pressure. Note that, of course, the
wave function changes as e increases in the integral.

The perturbation theory starts off easily enough. The first term (order €?) is
represented by the diagrams in Fig. 1. The direct term D1 vanishes by electrical
neutrality. Using the rules of Matsubara theory, we get,
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Next we proceed to examine the nominally second-order in e?, direct term,
(order e*?!) as represented in Fig. 2. The first thing we notice is that the integral
over the momentum labeled ¢ in the figure is divergent as ¢ — 0. The solution to
this problem was given by Gell-Mann and Brueckner [2]. They summed up all the
“ring diagrams.” The diagram corresponding to the next “ring term” is given in Fig.
3. This sum is expressed as,
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When we convert (2.6) to the series for the pQ, by (2.3), we get, interchanging the
orders of integration,
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where
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Fig. 4. The second-order exchange-interaction diagram.

To leading order in €2, only the w3 = 0 term contributes. Following Gell-Mann
and Brueckner [2], the result is found to be of the order e® and is called the Debye-
Hiickel term. There are corrections to this term of the order e*, but they are the
subject of the next section.

In Fig. 4, we show the second order exchange term. It contributes in a straight
forward manner an e* term. In addition, there are the second order in e? “forbidden
diagrams” which are shown in Fig 5. They do not occur in zero temperature pertur-
bation theory because the have two parallel lines with the same momentum. However
they do occur in finite temperature perturbation theory. Only the one labeled E2b
makes a non-zero contribution.

3. THE MISSING TERMS

Our previous report [4] on this general topic was incomplete because of what we
called the “missing terms.” These terms are the e* corrections to the Debye-Hiickel



term. Substituting in (2.7) both the ion and the electron contributions, we get
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for the difference between the whole sum of ring diagrams and the leading order term.

If we expand this expression for small e we obtain, for the e* term,

kT3 Z/ {{8“ (q',w3)+Z2Eion(¢f,w3)]r

8me 2= (R 2
-JMB[@[4om+Zﬂm@mﬂ}, (3:2)

which, as we will see, yields a finite coefficient for e*. The Kronecker delta is denoted
by d,,m. The next correction is expected to be of the order of e’.

In the ion case the density function is of Gaussian form [3] which permits the
integration over k in (2.8) to be evaluated as,
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Next we consider the result for the electrons. Here we use a series expansion
for = in powers of z = exp[u/(kT')]. To this end notice that
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The result is
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After considerable computation, we obtain terms for the following cases. For
the electron-electron, wy = 0 we get
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Table 1. Series coefficients for the ws # 0 correction

to the Debye Huckel term

n in fugacity in de Broglie density

0| 0.0000000000 0000000000 E+000  0.0000000000 0000000000 E4-000
1| 0.0000000000 0000000000 E4-000  0.0000000000 0000000000 E+000
2| 4.6513774096 5163678750 E—003  4.6513774096 5163678750 E—003
3| —3.4963487161 6090598808 E—003 —2.0732820793 831582707 E—004
4| 2.6015308683 2349543112 E—003  9.8879197604 3979831 E—006

5| —2.0076756122 2211161956 E—003 —4.2626300883 636177 E—007

6| 1.6028131711 2774032555 E—003  1.5323092299 68351 E—008

7| —1.3152892745 6794096619 E—003 —3.9190088396 787 E-010

8| 1.1034163301 7761627824 E—003 1.6080369966 0 E—012
91—9.4235995629 5790550502 E—004 5.6380750481 E—013
10| 8.1671770419 6771805805 E—004 —4.093577309 E—014
11| —7.1655028481 4367263145 E—004 1.70292681 E—015
12| 6.3521151009 9370927217 E—004 —3.453999 E—017
13| —5.6811665775 9281693552 E—004 —1.20181 E—018

where the de Broglie density is { = [ZN/(?Q)][h2/(27rka)]3/2 and
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For the electron-electron case with ws # 0, we have evaluated the leading order
coeflicients by means of Romberg integration. The results are listed in Table I.
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For the electron-ion case, only the w3 = 0 term contributes significantly in this
order as the other terms (when ( is not large) are of the order of m/M, where m is
the electron mass and M is the ion mass. The result is,
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For the ion-ion terms, the result for the w3 = 0 term is
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and the result for wg # 0 is just the entry for n = 2 in Table L.

4. SOLUTION OF THE FUGACITY EQUATIONS

In this section we need to eliminate the fugacities z and z;,, and re-express the
thermodynamic quantities in terms of observable variables. From standard quan-
tum statistical mechanics, the required functions may be obtained from the grand
partition function Q@ by means of
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where Nj,, = N for system neutrality.
Solving these equations, we get
PQ
o = Gol0) + GalO? + G (O + Ga(O' +oleh), (1.4

where y? = e2/(rykT), and 7} is the raduis of a sphere with volume Q/N. The
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The details of X, ©, and T are given in reference [4]. The details for zo(¢) are given
in reference [3]. The following two equations complete the description of the terms
used in the computation of the G’s.
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We show in Fig. 6 the ideal Fermi gas function Gg. In figures 7 - 9, we show
the ratios of the G;’s to the ideal Fermi gas function. These functions are evaluated
for the case of Aluminum. It is to be noticed that in the large { limit, all these ratios
tend to zero, which means that the pressure tends to the ideal gas pressure (for fixed
y). In the small ¢ limit, the relative size of the coefficients of €? and e* tends to zero,
however that for e® remains of order unity.
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A fuller comparison of the size of the corrections to the ideal gas has been
made. In order to gain some indication of the region of validity of the expansion we
have computed the values of y(¢) for which the third order (most restrictive) and
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the fourth order terms are equal to 0.1%, 1.0% and 10.0% of the value of the ideal
gas function. These results are plotted in figures 10 and 11, again for the case of
Aluminum. The regions above the plotted curves correspond to smaller values of y.

5. LOW DENSITY IONIZATION PROFILE

The results of the previous section allow us to give the leading order terms in
the expansion in inverse temperature of the terms of the low density expansion of
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the pressure. We complete the results of (4.17) of ref. [4]. Thus we have,
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where € = [2nme* /(h?ET)]'/*. We have compared this result with those of DeWitt
et al. [6] and find agreement in this limit, except for the ¢ 5 term where their result
appears to be too large by a factor of 2. Note that their result is is only for an
electron gas, so the ion-ion terms (which are dominant in the coefficients of €3 and
€* for large () do not appear in their results.

One of the conclusions which can be drawn from (5.1) is the low density limit
of the ionization profile, at least for high temperatures. Since the degree of ionization
is roughly the electron pressure over the ideal non-interacting electron pressure, we
deduce,

1- 4 2 (13.6052)°
lim Z__=4/ZZ ( ) , (5.2)
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where a is the Bohr radius. By contrast, the Saha formula [7]
Z; 1
(5.3)

7 1 + ACexp(x/T)
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gives
Z; : E
1-— 7 %, instead of o %, (5.4)

given by (5.2). Here p is the electron density. The difference in the power of p is
presumably a combination of quantum and Coulomb effects.

REFERENCES

1. T. Matsubara, “A New Approach to Quantum Statistical Mechanics,” Prog.
Theor. Phys. 14, 351 (1955).

2. M. Gell-Mann and K. A. Brueckner, “Correlation Energy of an Electron Gas at
High Density,” Phys. Rev. 106, 364 (1957).

3. G. A. Baker, Jr. and J. D. Johnson, “Many Body Perturbation Theory for the
Pressure of an Electron-Ton System,” in Condensed Matter Theories 10, 173,
edited by M. Casas, M. de Llano, J. Navarro, and A. Polis, Nova Science
Pubs., Commack NY, 1995.

4. G. A. Baker, Jr. and J. D. Johnson, “More Many-Body Perturbation Theory for
an Electron-lon System” to be published in Condensed Matter Theories 13
Nova Science Pubs., Commack NY.

5. L. D. Landau and E. M. Lifshitz, Statistical Physics, as translated by E. Peierls
and R. F. Peierls, Addison-Wesley, Reading, Mass. 1958.

6. H. E. DeWitt, M. Schlanges, A. Y. Sakakura, and W. D. Kraeft, “Low density
expansion of the equation of state for a quantum electron gas,” Phys. Letts.

A 197, 326 (1995).

7. N. H. Saha, Phil. Mag. 40, 472 (1920); D. Mihalas, Stellar Atmospheres, W. H.
Freeman, San Francisco, 1970.



